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Objectivesj

• It is computationally infeasible to model the 
macroscopic details of a casting while resolving themacroscopic details of a casting while resolving the 
smaller length and time scales that govern the 
underlying physics

• The aim of this project is to simulate the mechanical 
behavior of grain boundaries at the solidification 
front in order to predict hot tearingfront in order to predict hot tearing

• This model will be used in combination with 
macroscale models to predict longitudinal facialmacroscale models to predict longitudinal facial 
cracking in continuous casting of steel
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Longitudinal Facial Cracking
Segregation MechanismSegregation Mechanism

• Cracks occur on surface, meters long in casting direction

• Early work proposed segregation as root cause• Early work proposed segregation as root cause
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Brimacombe & Sorimachi, Met. Trans. B 1977 Kohno et al., Tetsu-to-Hagane 1982

Longitudinal Facial Cracking
Depression MechanismDepression Mechanism
• Caused by non-uniform heat transfer

Initiate nonuniformity (shell depression)• Initiate nonuniformity (shell depression)
– Variations in slag rim thickness at meniscus

– Gap from necking (mold friction issues)

– Gap from buckling (excessive NF taper)

• Depression causes:
Lower heat flux
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– Lower heat flux

– Higher shell temperature

– Thinner shell
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– Grain growth (larger grains)

– Stress and strain concentrations

• Once the tensile inelastic strain exceeds
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Once the tensile inelastic strain exceeds 
some critical value, a crack will form



An Issue

• The shell surface is in compression when inside the mold 
due to constraint from surrounding material 2

T idue to constraint from surrounding material
– Cracks are tensile (or shearing) failures

• Tensile behavior occurs on surface
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– During the first 0.5 s after initial solidification

– Under extreme reductions in heat transfer

– After reversal of depression due to ferrostatic pressure
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Brimacombe et al., ,
Met. Trans. B 1979
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Hot Tearing

• Cracks can propagate from the surface to the 
solidification front but it is much more mechanicallysolidification front, but it is much more mechanically 
favorable for the opposite to occur

• Tension on solidification front causes a hot tear
– Lack of liquid feeding between 

dendrites and/or grains results in 
porosity, or under tension, a hot tearporosity, or under tension, a hot tear

– Mechanical tension on top of 
solidification shrinkage induces 
higher liquid suction into thehigher liquid suction into the 
mushy region

– This phenomenon is concentrated
t i b d i
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at grain boundaries Shrinkage



Hot Tearing Criteria

• See Dantzig & Rappaz for more complete survey

• Clyne Davies model based on time spent in mushy zone• Clyne-Davies model based on time spent in mushy zone
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• Rappaz-Drezet-Gremaud model predicts liquid pressure at 
dendrite roots, can be compared to cavitation pressure

( ) ( )s sf f

– Sensitive to microsegregation model

• Various models do not correctly account for the rheology of 
the mushy zonethe mushy zone

• Most models are developed for aluminum alloys
– Low-carbon steels
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Won et al., Met. Trans. B 2000

Modeling Study of Hot Tearing
GeometryGeometry

• Consider a unit cell of interface of three grains

M d l th i b d l lli id• Model the grain boundary envelopes as ellipsoids
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Modeling Study of Hot Tearing
Boundary ConditionsBoundary Conditions

Symmetry

Specified Vel.

Assumed symmetry yields a 
perfect array of identical grains
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Fixed Disp.

Modeling Study of Hot Tearing
GeometryGeometry

2dliqT

mushL

• Obtain length of mushy 
f l

T

zone from macroscale 
simulations

• Obtain grain size from 
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Modeling Study of Hot Tearing
Modeling ApproachModeling Approach

• Conservations of mass, momentum, and energy
Solve with FEM– Solve with FEM

• Solve the solid and fluid problem together

T t lid ith diff i l (N b H i )• Treat solid with diffusional (Nabarro-Herring) creep 
constitutive equation
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• Treat liquid as laminar Newtonian fluid

T t i lid i t f th t

2μ′ =σ D
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• Treat semisolid as mixture of the two ( )1l l l sf fμ μ μ= + −

Modeling Study of Hot Tearing
Modeling ApproachModeling Approach

• Elasticity is mostly negligible at such high 
temperaturep

• One pressure field, with source for static pressure 
• Microscale model for secondary arms

P di ff– Porous media effects
• One velocity field, no-slip across interface
• Match tractions across interfaceMatch tractions across interface

• Prescribe evolution of mushy zone and total strain y
rate of the domain (as calculated in macroscale 
models), calculate response of grain interfaces
– Evaluate for hot tearing!
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Evaluate for hot tearing!



Modeling Study of Hot Tearing

• Use microscale model to learn about hot tearing
f(grain size cooling rate microsegregation etc )– f(grain size, cooling rate, microsegregation, etc.)

• Use the results in macroscale models to investigate 
longitudinal crack formation in continuous castinglongitudinal crack formation in continuous casting
– f(casting speed, steel grade, etc.)
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